Magnetic properties of HgTe quantum wells

نویسندگان

  • Benedikt Scharf
  • Alex Matos-Abiague
چکیده

Using analytical formulas as well as a finite-difference scheme, we investigate themagnetic field dependence of the energy spectra and magnetic edge states of HgTe/CdTe-based quantum wells in the presence of perpendicular magnetic fields and hard walls for the band-structure parameters corresponding to the normal and inverted regimes. Whereas one can not find counterpropagating, spin-polarized states in the normal regime, below the crossover point between the uppermost (electronlike) valence and lowest (holelike) conduction Landau levels, one can still observe such states at finite magnetic fields in the inverted regime, although these states are no longer protected by time-reversal symmetry. Furthermore, the bulk magnetization and susceptibility in HgTe quantum wells are studied, in particular their dependence on the magnetic field, chemical potential, and carrier densities. We find that for fixed chemical potentials as well as for fixed carrier densities, the magnetization and magnetic susceptibility in both the normal and the inverted regimes exhibit de Haas–van Alphen oscillations, the amplitude of which decreases with increasing temperature. Moreover, if the band structure is inverted, the ground-state magnetization (and consequently also the ground-state susceptibility) is discontinuous at the crossover point between the uppermost valence and lowest conduction Landau levels. At finite temperatures and/or doping, this discontinuity is canceled by the contribution from the electrons and holes and the total magnetization and susceptibility are continuous. In the normal regime, this discontinuity of the ground-state magnetization does not arise and the magnetization is continuous for zero as well as finite temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields

: Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum ...

متن کامل

Probing topological transitions in HgTe/CdTe quantum wells by magneto-optical measurements

In two-dimensional topological insulators, such as inverted HgTe/CdTe quantum wells, helical quantum spin Hall (QSH) states persist even at finite magnetic fields below a critical magnetic field Bc, above which only quantum Hall (QH) states can be found. Using linear-response theory, we theoretically investigate the magnetooptical properties of inverted HgTe/CdTe quantum wells, both for infinit...

متن کامل

Gate defined wires in HgTe quantum wells: from Majorana fermions to spintronics

We introduce a promising new platform for Majorana zero-modes and various spintronics applications based on gate-defined wires in HgTe quantum wells. Due to the Dirac-like band structure for HgTe the physics of such systems differs markedly from that of conventional quantum wires. Most strikingly, we show that the subband parameters for gate-defined HgTe wires exhibit exquisite tunability: mode...

متن کامل

Phase transitions in two tunnel-coupled HgTe quantum wells: Bilayer graphene analogy and beyond

HgTe quantum wells possess remarkable physical properties as for instance the quantum spin Hall state and the "single-valley" analog of graphene, depending on their layer thicknesses and barrier composition. However, double HgTe quantum wells yet contain more fascinating and still unrevealed features. Here we report on the study of the quantum phase transitions in tunnel-coupled HgTe layers sep...

متن کامل

Quantum spin hall insulator state in HgTe quantum wells.

Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We fabricated such sample structures with low density and high mobility in which we could tune, through an external gate voltage, the carrier conduction from n-type to p-type, passing through an insul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012